103學年度下學期 - 最佳化理論
最佳化理論
OPTIMIZATION THEORY
ICE508
講授類
選修
通訊工程研究所碩士班
選修
溫朝凱 副教授
3
1. Statistical Learning
2. Linear Regression
3. Classification
4. Resampling Methods
5. Linear Model Selection and Regularization
6. Moving Beyond Linearity
7. Tree-Based Methods
8. Support Vector Machines
9. Unsupervised Learning
With the explosion of "Big Data" problems, optimization theory has found applications in such hot field. The last decade has seen a significant expansion of the number of possible approaches. In this course, we aim to give students in-depth tutorial to such modern methods, and the training to use a statistics package to solve real business situations.
Lecture
1.Quiz:30%
2.Midterm exam:30%
3.Final Project:40%
序號 |
作者 |
書名 |
出版社 |
出版年 |
出版地 |
ISBN# |
1 |
G. James, D. Witten, T. Hastie and R. Tibshirani |
An Introduction to Statistical Learning with Applications in R |
Springer |
2014 |
|
978-1461471370 |
2 |
S. Boyd and L. Vandenberghe |
Convex Optimization |
Cambridge Univ. Press |
2004 |
|
007-125579-6 |
週次 |
日期 |
授課內容及主題 |
1 |
2015/02/25~2015/03/01 |
Statistical Learning |
2 |
2015/03/02~2015/03/08 |
Statistical Learning |
3 |
2015/03/09~2015/03/15 |
Linear Regression |
4 |
2015/03/16~2015/03/22 |
Classification |
5 |
2015/03/23~2015/03/29 |
Classification |
6 |
2015/03/30~2015/04/05 |
Classification |
7 |
2015/04/06~2015/04/12 |
Resampling Methods |
8 |
2015/04/13~2015/04/19 |
Linear Model Selection and Regularization |
9 |
2015/04/20~2015/04/26 |
Linear Model Selection and Regularization |
10 |
2015/04/27~2015/05/03 |
Midterm |
11 |
2015/05/04~2015/05/10 |
Robust estimation |
12 |
2015/05/11~2015/05/17 |
Moving Beyond Linearity |
13 |
2015/05/18~2015/05/24 |
Tree-Based Methods |
14 |
2015/05/25~2015/05/31 |
Tree-Based Methods |
15 |
2015/06/01~2015/06/07 |
Support Vector Machines |
16 |
2015/06/08~2015/06/14 |
Unsupervised Learning |
17 |
2015/06/15~2015/06/21 |
Final Presenations |
18 |
2015/06/22~2015/06/28 |
Final Presenations |
時段1:
時間:星期四12:00~14:00
地點:工EC9009
時段2:
時間:星期五12:00~14:00
地點:工EC9009