跳到主要內容區

 工程技術導論與專題實務創新課程模組工程技術導論與專題實務創新課程模組

Top

104年度下學期-機器學習

機器學習

MACHINE LEARNING

ICE535

課程類別:講授類

必選修:選修

系所:通訊工程研究所碩士班

授課教師:溫朝凱

學分:3

 

課程大鋼:

Data analysis methods in machine learning are widely considered as a useful tool in recent industry and science. With the growth of the Web and improvements in data collection technology in science, the magnitude and complexity of these analysis tasks also rapid increase. This trend is driving the need for scalable, parallel and online algorithms and models which can handle such “Big Data”. This course will provide a broad foundation for this timely challenge.

 

課程目標:

1. Modeling Techniques: linear models, graphical models, matrix and tensor factorizations, clustering, and latent factor models

2. Algorithmic Topics: sketching, fast n-body problems, random projections and hashing, large-scale online learning, and parallel learning

3. Computational Techniques: a basic foundation in large-scale programming, ranging from the basic "parfor" to parallel abstractions

 

授課方式:

Lecture

 

評分方式:

1.Quizzes:30%

2.Midterm exam:30%

3.Final exam:40%

 

每週課程期預定進度:

週次

日期

授課內容及主題

1

2016/02/22~2016/02/28

Introduction

2

2016/02/29~2016/03/06

Overview of Supervised Learning

3

2016/03/07~2016/03/13

Linear Methods for Regression

4

2016/03/14~2016/03/20

Linear Methods for Classification

5

2016/03/21~2016/03/27

Basis Expansions and Regularization

6

2016/03/28~2016/04/03

Kernel Smoothing Methods

7

2016/04/04~2016/04/10

Model Assessment and Selection

8

2016/04/11~2016/04/17

Model Inference and Averaging

9

2016/04/18~2016/04/24

Midle Exam

10

2016/04/25~2016/05/01

Additive Models, Trees, and Related Methods

11

2016/05/02~2016/05/08

Additive Models, Trees, and Related Methods

12

2016/05/09~2016/05/15

Boosting and Additive Trees

13

2016/05/16~2016/05/22

Neural Networks

14

2016/05/23~2016/05/29

Support Vector Machines and Flexible Discriminants

15

2016/05/30~2016/06/05

Prototype Methods and Nearest-Neighbors

16

2016/06/06~2016/06/12

Unsupervised Learning

17

2016/06/13~2016/06/19

Random Forests

18

2016/06/20~2016/06/26

Final Exam

 

課程討論時間:

時段1:
時間:星期一12:00~ 14:00
地點:工9009
時段2:
時間:星期二12:00~ 14:00
地點:工9009

 

瀏覽數: